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Winds with Surface Observations 

 
Dr. Dennis A. Moon 

 
Abstract: 
One year of wind field data from hourly NOAA Rapid Update Cycle (RUC) analyses is compared with 
surface observations over western North and South Dakota and eastern Montana. A similar analysis is 
performed on a set of wind fields derived from the RUC data, enhanced by assimilation of surface 
observations using the University of Oklahoma ARPS Data Assimilation System (ADAS) system. 
Strong correlations between the gridded and observational data are observed, with R2 values exceeding 
0.9 in most cases. Better correlation is seen for stronger wind situations. Errors in the RUC speed and 
directional data are reduced by approximately 40% by application of the ADAS system. 
 
Introduction: 
The CALMET/CALPUFF modeling system has been promulgated by the US EPA for regulatory 
permitting usage. CALMET is a diagnostic wind-field model used to generate three-dimensional 
meteorological fields as inputs to the CALPUFF dispersion modeling system. While CALMET is 
capable of generating these fields directly from a set of surface and upper air observations, such fields 
lack dynamic consistency as implied by the equations of motion. While CALMET does adjust the wind 
fields to conserve mass, conservation of momentum, thermodynamic energy, and water substance are 
not observed. Prognostic models take these quantities into account including non-linear and time 
derivative terms. As a consequence, the EPA encourages the use of meteorological fields from a 
prognostic model as first guess fields, by allowing the use of three years of meteorological data when 
using prognostic model fields as opposed to five years required when using traditional meteorological 
data. (US EPA 40 CFR Part 51, Appendix W)  CALMET is then used to blend the observational data 
into background fields from the prognostic model. 
 
The Mesoscale Model version 5 (MM5) modeling system from the National Center for Atmospheric 
Research (NCAR) and Pennsylvania State University is the most widely used mesoscale modeling 
system, having been deployed in a wide range of research and operational settings , see 
(http://www.mmm.ucar.edu/mm5/mm5-home.html ). Meteorological fields from MM5 are frequently 
used as a source of first-guess fields for CALMET, and indeed the CALMET system includes software 
tools for the conversion of MM5 generated datasets into a CALMET-specific input text format. Use of 
the MM5 model allows for custom grid resolution and specification of physical parameterizations as 
required to represent the relevant flow features for a given location. In addition, the model includes a 
Four Dimensional Data Assimilation (FDDA) capability, which can be used to “nudge” the model 
towards the actual solution when applied to past cases for which observed data is available. 
 
Another source of prognostic modeling data that has not been as widely considered within the air quality 
modeling community are the real-time modeling systems from the National Center for Environmental 
Predictions (NCEP). NCEP is charged with the task of development and operation of the suite of models 
used by the National Weather Service forecast operations. An integral step in the process of generating a 
model-based forecast is the preparation of the initial (or analysis) fields. This entails preparation of a 
three-dimensional, gridded analysis of the state of the atmosphere with as much accuracy as possible. 
This process involves using an assimilation system to blend the most recent observational data with 
first-guess fields from previous runs. 
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Of particular interest is the Rapid Update Cycle (RUC) system used to provide frequently updated short-
term forecasts. The RUC cycle is unique among the NCEP forecast systems in that analyses are 
produced every hour, versus every six hours for the other models used for longer term forecasting, such 
as in the Eta and GFS modeling systems. The RUC cycle uses a process known as continuous 
assimilation, in which short, one hour forecast segments are interspersed with applications of the data 
assimilation process. This means that each hour, the one-hour forecast fields are corrected, based on the 
real-time data collected by The National Oceanographic and Atmospheric Administration (NOAA). 
These corrected fields serve as the starting point for the CALMET analysis described here. The one-hour 
analysis time step (not to be confused with the much smaller internal time step used within the RUC 
forecast model) is important in that the short duration for the forecast phase limits the magnitude of 
forecast errors that are an inevitable consequence of running any prognostic model. The model is never 
allowed to stray too far from the actual state of the atmosphere, within limits determined by 
observational sampling frequency, density, and accuracy. Frontal positions, for instance, can be 
reasonably well adjusted for in the assimilation process providing that the model frontal positions are 
close to those supported by the observations. 
 
The one-hour analysis interval of the RUC system is also important for air quality modeling, in that 
CALMET requires its meteorological fields on a one-hour time step. Continuous assimilation cycles are 
complex and computationally expensive to run; however one can take advantage of the NOAA RUC 
cycle by using archives of the hourly analyses. In addition, NOAA, both NCEP and the Forecast System 
Laboratory (FSL), the developers of RUC, have access to a wealth of real-time observational data 
resources well beyond that available to private entities. As a result, their analyses include a more 
complete set of observations than could be assembled in an attempt to run a custom continuous 
assimilation cycle. Table 1 shows the data resources utilized in the RUC process. 
Table 1 
Data Type Number Frequency # obs in Study Area 

Rawinsonde (inc. special obs) 80 / 12h 2 (see figure 1) 

NOAA 405 MHz profilers   31  / 1h 0 (see figure 2) 

VAD winds (WSR-88D radars)  110-130 / 1h  
3 soundings (see figure 
3 for more information) 

Aircraft (ACARS) (V, temp)     1400-4500 / 1h  
Some flight level 
winds/no vertical 

profiles
Surface/METAR - land (V, 
psfc, T, Td) 1500-1700 / 1h  

22 (see figure 4) 

Buoy 100-150 / 1h NA 

GOES precipitable water 1500-3000 / 1h  complete coverage 

GOES cloud drift winds  1000-2500 / 1h  complete coverage 

GOES cloud-top pressure ~10 km res / 1h  complete coverage 

SSM/I precipitable water 1000-4000 / 6h  complete coverage 

Ship reports 10s / 3h NA 

Reconnaissance dropwinsonde a few / variable NA 
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Figure 1. Location of radiosonde locations surrounding North Dakota 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Locations of profiler and RASS stations 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.  Locations of NWS-88D radars (normally 5-15 VAD wind levels available at each site, 
depending on atmospheric conditions). 
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The greatest value in the use of these analysis datasets as opposed to going back and re-simulating a 
time period using a mesoscale model lies in the application of the continuous assimilation process. Even 
when run in retrospective mode, model simulated fields will exhibit significant differences from 
observations. We often refer to this as “forecast” error and it is the result of imperfections in the finite 
representation of the continuous equations of motion, simplifying assumptions in the treatment of 
complex physical processes such as turbulence, radiation and cloud microphysics, errors in the 
representation of the soil and vegetative properties, and errors in the initial and boundary conditions 
supplied to the model which reflect the relatively low sampling density of the observational network. 
The net result is that while the flow patterns and resultant weather features are generally well simulated 
when considered from a pattern matching point of view, point time-series extracted from model 
simulations exhibit significant error, even when taken from what would be considered an excellent 
simulation. When simulating a long time-series the model must be periodically re-initialized from the 
archived data in order to eliminate model drift. Typically this might be done by restarting each day of 
the simulation, resulting effectively to the generation of a series of 24-hour forecasts. 
 
Harrison (2003) discusses a comparison between 12-hour MM5 model forecasts and surface and upper 
air observations in the Pacific Northwest region over an 18-month period. The MM5 employed a grid 
resolution of 4 km. Model solutions were interpolated to the observation locations. Considering the 
surface (10m) wind results, he found the Root Mean Square (RMS) speed error to be 2.46 m/s, as 
compared to a mean wind speed of 2.55 m/s. The model surface direction showed a bias of –15.65 
degrees, indicating a tendency for the model wind directions to be rotated clockwise or veered from the 
observations. The RMS direction error was a discouraging 73.65 degrees. He also calculated the 
coefficient of determination, R2, for the matched model and observed wind vectors. The interpretation of 
this quantity is that a value of 1.0 indicates a perfect match, a value of 0.0 indicates a correlation 
between the two data sets no greater than that achieved by substituting the mean quantities as predictions 
(using climatology), and negative values indicate less correlation than the climatology. He reports a 
negative value of R2 value at negative 1.25. 
 
It should be noted that the Pacific Northwest weather patterns are strongly influenced by coastal and 
topographic effects, making it a very challenging area to model. However these values are not out of line 
with other sources. When comparing the NCEP Eta model forecasts against 50m winds observed at a 
Midwestern wind turbine facility, WindLogics observed a residual mean absolute error (MAE) of 1.84 
m/s after adjusting the model forecasts to remove the bias by applying a linear fit between the two sets 
of data. Brundage et al (2001) report on a comparison of 12-hour RUC model forecasts on a 40km grid 
against tower data. For a 10m AGL site near Golden Colorado, they report an RMS error for wind speed 
of 2.96 m/s. Comparing against 30m AGL tower measurements they report an RMS error of 2.49 m/s for 
a site in Southwest Minnesota. 
 
The use of FDDA to nudge the simulation towards observed values can be of help in obtaining MM5 
solutions that more closely match the observations, although in practice the use of FDDA can be 
problematic. Point nudging is a technique whereby the model experiences additional forcing terms at 
grid cells in the vicinity of an observational point which are proportional to the difference between the 
grid point value and the observed value. In this way the model solutions are “encouraged” to agree with 
the point values. This works well when in cases where the model solutions are inherently “close” to the 
observations, hence the apt choice of a name for the technique, nudging. In cases where the model 
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solution diverges significantly from the observations the process of nudging can result in some very un-
physical looking flow structures in the vicinity of the observations. This is particularly true in cases 
where the wind directions disagree. The problem is that the model winds at any point are the result of a 
complex set of interactions involving the mass and momentum fields over a large area. The process of 
nudging the model grid points near the observations cannot affect the large scale field from which the 
model winds result, in any meaningful way. 
 
Model first-guess fields derived from RUC archives have the advantage of being analyses rather than 
forecasts. That is, they reflect the level of error in the initial conditions used for the RUC model rather 
than the forecast errors. Therefore it would be expected that in many cases they should be suitable for 
use as high-quality first-guess fields for the CALMET modeling process. We present here a comparison 
of the RUC analysis wind fields, from a 40 km grid, with metar 10m AGL observations over a 
CALMET domain in the Northern Plains. The intent is to quantify the surface wind error characteristics 
of this data source and this region. 
 
As a second step, we compare the observations against the RUC data enhanced by using the University 
of Oklahoma ADAS assimilation system to re-assimilate the observations into the RUC data on a finer 
10km grid. The ADAS system, see Brewster (1996) and the CAPS web page 
(http://www.caps.ou.edu/ARPS/ADAS432.doc.htm), is a highly regarded mesoscale assimilation system 
with which we have considerable experience, using it to provide initial conditions to ARPS and MM5 
mesoscale model runs. The primary goals here were to enable incorporation of observed data that 
arrived too late to be included in the real-time RUC analysis process, and by going to a finer grid, to 
allow the gridded system to more accurately reflect the variations between observations. It should be 
noted that the objective here was to enhance the data for CALMET processing, rather than to compare 
the merits of the RUC and ADAS assimilation systems, so the positive effect of the higher grid 
resolution is included in the results.  
 
A couple of limitations inherent in the RUC data files should be mentioned. First, the RUC system is a 
real-time system operating on a tight time schedule. For this reason, late arriving observations may be 
missed in the RUC assimilation process. This is one of the key reasons for re-assimilating the 
observational data after the fact using ADAS. Second, the grid spacing available in the RUC archives is 
40 km prior to 2003, and 20 km from there forward. For many parts of the country that is sufficient 
resolution to accurately represent the dynamical systems responsible for the wind field structure. The 20 
km data in particular appears to do a reasonable job of resolving mesoscale features such as sea breezes, 
although undoubtedly the detailed sea-breeze frontal structures are smoothed out compared to reality. In 
cases where the mesoscale forcing is strong, and the horizontal scale of mesoscale organization 
(primarily due to terrain effects) is small relative to the RUC grid size the RUC data may not resolve the 
relevant flow features. In such cases it may make sense to use a mesoscale model run to generate the 
meteorological fields. The determining factor is whether the improvements in resolving the mesoscale 
flow patterns outweigh the additional forecast error incurred by the model. An example might be 
thermally driven flows between the California Central Valley region and the Mohave Desert where the 
details of the flow are determined by small-scale terrain features such as passes through the mountains, 
which serve as flow channels. Interaction with the terrain would also serve to excite gravity wave modes 
in the atmosphere. In such a regime, the 40km or 20km RUC data could not be expected to resolve the 
fine scale features and a high resolution MM5 solution would be more appropriate. 
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Procedure: 
The study domain is shown in Figure 4, with the location of the comparison points highlighted in red, 
and the 40 km RUC grid shown in green. Also shown are surface metar stations within the study area. 
All of the stations shown are used by NCEP in the RUC process. The stations marked with dots show 
those with archived data available in the WindLogics archives for the process of re-introduction using 
ADAS and for the validation process. 
 
 
 

 
 
Figure 4.  Computational Domain and 40 km RUC grid.  Dots indicate metar stations used for validation 
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Figure 5.  Study Domain with the 10 km grid used in the ADAS processing. Dots indicate metar stations 
used for validation. 
 
The comparison period is for calendar year 2002 at 16 observing stations, as indicated by the dots on 
figures 4 and 5, representing a total of about 117,000 matched observation/model pairs. The analysis 
procedure was to first calculate the Cartesian X and Y coordinates of the grid points and observation 
locations within the map projection system of the grid, in this case a Lambert grid. Within this system 
the grid is orthogonal and aligned with the X and Y coordinate, allowing for simple bilinear 
interpolation of the gridded 10m AGL wind components to the observations locations. In both cases, the 
40 km RUC data and the 10 km ADAS data, the four grid points surrounding the observation location 
were used in the interpolation process. Observations of calm were included in the speed calculations but 
excluded from the directional analysis. The surface observations, RUC data, and RUC/ADAS data were 
all accessed from netCDF binary random access files. 
 
Statistical measures relating to the speed and directional error were then derived from the matched data 
pairs. These included: 
 

• Mean absolute Error: 
 

)(MAE om YY −=  
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Where Y is speed or direction. Note that directional errors were always normalized to be less 
than 180 degrees. The “o” and “m” subscripts indicate that the values are for observation or 
model data respectively. 
 

• )(BIAS om YY −=  
 
 

• The Vector errors were defined as the magnitude of the vector difference between the model and 
observed winds.  

 
)(MAEVector om VV

vv
−=  

 
 

• Coefficient of determination, R2, defined as: 
 
 

      
 

Where: 
o U0 is the observed X-component of the wind 
o V0 is the observed Y-component of the wind 
o Um is the model predicted X-component of the wind 
o Vm is the model predicted Y-component of the wind 
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Results: 
A summary of the speed error statistics is shown in Table 2. The numbers in the “RUC” column reflect 
the 40 km RUC errors and the “RUC/ADAS” column shows results for the enhanced RUC data on the 
10 km grid. In addition to the overall statistics, results are shown for “fast” and “slow” cases, with slow 
being observations less than or equal to 5 kt (2.57m/s). Speeds below 5 kt were considered indicative of 
typical light wind, frequently nocturnal, cases that present a challenge to models. 
 
Table 2:  

 Speed MAE Speed Bias Vector MAE R2 

 RUC RUC / 
ADAS RUC RUC / 

ADAS RUC RUC / 
ADAS RUC RUC / 

ADAS 
< 5 kt 0.563 0.341 0.266 0.162 0.790 0.478 0.613 0.814 
> 5 kt 0.608 0.335 -0.283 -0.016 0.953 0.587 0.955 0.982 

All 0.597 0.336 -0.145 0.029 0.912 0.559 0.932 0.972 
Speed data in m/s 

 
The RUC speed analysis results are encouraging. Referring to the overall results, we see that the mean 
absolute error is less than 0.6 m/s as compared to a typical forecast error of 2 m/s or more. While not 
surprising that a set of initial conditions files should exhibit superior error characteristics compared to a 
forecast, it is important to validate the concept for air quality usage. The speed bias is –0.145 m/s 
indicating that the RUC analysis winds were on average very slightly slower than the observed winds.  
The vector results were also encouraging. While the other studies don’t specifically cite this quantity, 
the vector errors are typically around 50% larger than scalar speed errors. The RUC vector MAE is less 
than 1 m/s as compared to forecast errors typically in the 3 m/s range. The coefficient of determination 
indicates strong correlation between the RUC and surface observations datasets with a 0.93 value. 
Looking at the results for slow and fast wind separately, we see for the speed MAE, vector MAE, and 
speed bias that the errors for the fast category are all slightly larger than for the slow winds. The R2 
value shows a fairly significant difference between slow and fast. The fast winds are highly correlated 
with a value over 0.95, while for the slow wind subset the correlation is reduced to 0.61, a value that still 
indicates a good correlation. The reason for this can be seen in the definition of R2. The wind errors are 
scaled by the magnitude of the deviations from the average value. The lower coefficient of 
determination for the slow wind cases indicates that while the magnitude of the errors may be slightly 
lower than for the high wind cases, the relative error compared to normal speed deviations is larger. This 
is not a surprising result as the actual deviations from normal will naturally be smaller for the low wind 
case. 
 
The RUC/ADAS analyses show a marked error reduction over the straight RUC data. The error 
magnitudes are reduced in most cases by 40% or more, with the speed and vector MAE values at 0.34 
m/s and 0.56 m/s respectively. The speed bias is negligible at about 0.03 m/s. Not surprisingly the 
coefficient of the determination shows stronger correlation with the observations. Comparing the slow 
versus fast samples, we see the same trends as in the RUC results, although in this case the R2 value for 
the slow wind cases drops to 0.81 as compared to 0.61 for the RUC. 
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A summary of directional errors is shown in Table 3. 
 
Table 3: 

 Direction MAE Direction Bias 

 RUC RUC / 
ADAS RUC RUC / ADAS 

< 5 kt 16.534 9.872 1.862 2.767 
> 5 kt 7.029 4.478 0.186 0.699 

All 8.87 5.52 0.510 1.098 
   Directional data in degrees 
 
 
The RUC directional MAE for all cases was 8.9 degrees. It is difficult to make a meaningful comparison 
with the Harrison results given the differences in meteorological regimes, except to say that directional 
errors were about a factor of 8 lower for the RUC data and this domain. The slow wind cases tended to 
show more directional error than with fast wind, with just over double the MAE at 16.5 degrees. At 10m 
AGL the slower wind fields often occur at night, when strong thermal stability can work to decouple the 
low level winds from the synoptic pattern to varying degrees. As a result, the wind pattern becomes 
dominated to a much greater extent by local phenomena such as drainage flows, which exhibit low 
spatial correlation. Nearby stations can frequently be seen with great differences in wind direction. In 
such cases the assimilation system (RUC or ADAS) is dealing with highly variable fields with weak 
magnitudes, degrading the directional analysis. An example low wind case is shown in figure 6. As with 
speeds, the directional biases were very small in all cases.  
 
 

 
Figure 6. An example of light and variable winds 



 

 
 

 
RUC Data Workshop 

 

 11

For directional MAE the RUC/ADAS result showed marked improvement over the RUC errors. The 
error reduction was again about 40% compared to RUC, for all both speed classes. The RUC/ADAS 
directional bias was slightly larger then the RUC result but still very small. 
 
Figures 7-9 show more detail into the distribution of the errors, for speed, direction, and vector errors. In 
general the RUC/ADAS errors are more tightly clustered around the zero point, with larger contributions 
on the tail portions of the curves from the raw RUC data.  
 

 
 

Figure 7. Speed error distribution for RUC and RUC/ADAS 
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Figure 8. Directional error distribution for RUC and RUC/ADAS  

 
Figure 9. Vector error distribution for RUC and RUC/ADAS 
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A diurnal analysis was performed to determine if there were significant influences on the error 
characteristics. Error statistics were accumulated separately for each hour of the day, with results shown 
in figures 10-14. The only noticeable trend regarding the speed and direction errors was slightly higher 
errors around the 00Z and 12Z timeframes. We believe that the explanation for this lies in the fact that 
those are the times when large amount of upper air observations are applied to the assimilation process. 
Surface observations in the vicinity of an upper air site have relatively less weight in the interpolation 
process. The RUC data shows a slight negative speed bias for all times, but the effect is most evident in 
the daytime hours, with a typical bias of ~ -0.23 m/s versus approximately -0.1 m/s during nighttime 
hours. These small errors are corrected for in the ADAS assimilation process. 
 
 

 
Figure 10. Speed MAE as a function of time of day 
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Figure 11. Vector MAE as a function of time of day  
 

 
Figure 12. Speed bias as a function of time of day 
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Figure 13. Direction MAE as a function of time of day  

 
Figure 14. Directional Bias as a function of time of day 
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Error characteristics were also considered as a function of the time of year. No significant trends 
emerged, although some subtle effects were evident. Figures 15 shows the speed MAE by month. It is a 
bit surprising that the RUC MAE values tend to be slightly higher during the warm season months when 
the speeds are lower. This trend is corrected in the ADAS process. In figure 16 we see that the RUC 
directional MAE tends to be higher in the summer months, which agrees with the earlier observation 
that the direction errors are greater for low wind cases. In figure 17 we see that the coefficient of 
determination, R2, drops slightly for RUC, and to a lesser extent for RUC/ADAS, in the summer 
months, again related to the greater incidence of low wind speeds during that time of year. 
 

 
Figure 15. Speed MAE as a function of month of the year. 
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Figure 16. Directional MAE as a function of month of year. 

 
Figure 17. Coefficient of Determination as a function of month of the year 
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Concluding Remarks: 
The hourly RUC analyses have been identified as a useful, and potentially highly accurate source of 
first-guess winds for the CALMET modeling process. In this paper we have taken a look at the surface 
wind error characteristics of the RUC data over a domain in the Northern Plains. The RUC grid cell size 
for the current study was 40 km, while the model has been running in 20 km mode for the last couple of 
years. The principle advantage of this dataset is that they are analyses that are created as part of a NOAA 
continuous assimilation process. Being analyses, they would be expected to have lower error than 
prognostic (forecast) model runs, at least in areas where the RUC system has sufficient grid resolution to 
represent the relent flow features. This was certainly confirmed, with overall speed MAE values less 
than 0.6 m/s and vector errors of less than 1 m/s, this compares to typical prognostic modeling speed 
errors of 2-3 m/s. It should be pointed out that the observations used to check against the RUC data 
“should” have been seen by the RUC system and used in the data analysis, and it appears that most of 
them were. To that extent, this is a measure of the ability of the RUC system come up with a reasonable 
assimilation of the observations.  
 
The RUC data was utilized as the first guess source for the ADAS mesoscale assimilation system, which 
then re-introduced the surface observations onto a finer 10 km grid. The intent was an enhancement of 
the RUC data to include additional observations that may have been missing in the real-time RUC 
process, and by employing a finer grid, make it easier to accommodate small-scale variability of the 
wind. Typical wind speed and direction errors for this system were 40% lower than for the raw RUC 
data. It should be stressed that the data used for evaluation was also used in the preparation of the fields, 
so this amounts to primarily a examination of the ability of the assimilation process to produce accurate 
analyses, which is very different than a forecast accuracy experiment. But this difference, analysis 
versus forecast, is the core rationale for using this data. Undoubtedly some of the improvement was due 
to the finer grid size and some due to the availability of some observations that were not available to the 
real-time RUC system. It is not possible to break down how much of the improvement was attributable 
to what cause. This was not a comparison of the relative merits of the RUC versus the ADAS 
assimilation system, but a first-cut test of the error characteristics of the dataset prepared for the State of 
North Dakota. 
 
In practice, the RUC/ADAS fields are introduced into CALMET as first-guess fields, and the normal 
CALMET process of blending in surface and upper air observations is performed. It might be argued 
that the ADAS step of re-introducing the observations was an “extra step”, since they would be brought 
into the CALMET process anyway. This was done for two reasons: First, the RUC data had to be 
processed onto an MM5 grid system anyway to accommodate the CALMET MM5.DAT input format, 
and this was done through the ADAS system, so at that point it was relatively easy to perform the 
assimilation. Second, based on past experience, and confidence in the assimilation algorithms, we 
believed that the ADAS system would do an excellent job of re-introducing the data, which I believe 
was borne out in these results. That being said, a skilled CALMET practitioner would very likely be able 
to get similar results using the raw RUC (processed onto an MM5 grid structure and written into 
MM5.DAT format) for the first guess fields and re-introducing the data just in CALMET. A test of that 
assertion would be a logical follow-on to the current study. 
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